Thursday, September 23, 2010

New Adult Stem Cells Could Speed Progress in Regenerative Medicine

According to the following article, researchers at the University at Buffalo have engineered adult stem cells that scientists can grow continuously in culture, a discovery that could speed development of cost-effective treatments for diseases including heart disease, diabetes, immune disorders and neurodegenerative diseases. This is a really exciting development, because it eliminates the controversy about embryonic stem cells.
    . . . June


-------- 

Researchers Engineer Adult Stem Cells That Do Not Age, Overcoming a Major Barrier to Progress in Regenerative Medicine:
http://nextbigfuture.com

Biomedical researchers at the University at Buffalo have engineered adult stem cells that scientists can grow continuously in culture, a discovery that could speed development of cost-effective treatments for diseases including heart disease, diabetes, immune disorders and neurodegenerative diseases.

UB scientists created the new cell lines – named "MSC Universal" – by genetically altering mesenchymal stem cells, which are found in bone marrow and can differentiate into cell types including bone, cartilage, muscle, fat, and beta-pancreatic islet cells.

Lee says his research team has generated two lines of MSC-Universal cells: a human line and a porcine line. Using the engineering technique he and colleagues developed, scientists can generate an MSC-Universal line from any donor sample of mesenchymal stem cells, he says.

"I imagine that if these cells become routinely used in the future, one can generate a line from each ethnic group for each gender for people to choose from," Lee says.

The researchers say the breakthrough overcomes a frustrating barrier to progress in the field of regenerative medicine: The difficulty of growing adult stem cells for clinical applications.

Because mesenchymal stem cells have a limited life span in laboratory cultures, scientists and doctors who use the cells in research and treatments must continuously obtain fresh samples from bone marrow donors, a process both expensive and time-consuming. In addition, mesenchymal stem cells from different donors can vary in performance.

The cells that UB researchers modified show no signs of aging in culture, but otherwise appear to function as regular mesenchymal stem cells do – including by conferring therapeutic benefits in an animal study of heart disease. Despite their propensity to proliferate in the laboratory, MSC-Universal cells did not form tumors in animal testing.

Read More . . .